Factores de riesgo del síndrome de túnel del carpo en usuarios de sillas de ruedas

Leonardo Arce Gálvez, Alexander Benavides Ramírez, Juan Martin Mancera Álzate, Eduardo Velásquez Girón

Texto completo:

PDF

Resumen

Introducción: El síndrome de túnel de carpo es una neuropatía del nervio mediano muy frecuente en la población. Para los usuarios de sillas de ruedas hay mayor riesgo biomecánico por utilizar reiteradamente la muñeca en la propulsión de este vehículo.

Objetivo: Analizar los factores biomecánicos de la silla de ruedas que inciden en el desarrollo del síndrome de túnel del carpo.

Métodos: Se realizó una revisión sistemática con términos Mesh en bases de datos como Embase, Pubmed, Google Acedemics, Scielo desde 1988 hasta 2021. Se revisaron más de 200 artículos y por su impacto clínico, se seleccionaron 52 para la revisión.

Resultados: El 43 % de los usuarios de silla de ruedas presentan dolor en la muñeca y prevalece como diagnóstico el síndrome de túnel del carpo. La posición de la muñeca en la propulsión genera un aumento de presión en el túnel carpiano lo que condiciona la lesión del nervio mediano. Existen factores de riesgo como el género femenino, las pendientes, el terreno irregular, la vibración, la altura del asiento y el peso del paciente. Entender correctamente las fases de la autopropulsión con sus cuatro patrones, más una prescripción adecuada y los aditamentos necesarios para la silla de ruedas pueden disminuir el riesgo de padecer el síndrome de túnel del carpo.

Conclusión: Es importante involucrar de manera activa a los profesionales de la salud en la implementación de estrategias para el entrenamiento, prescripción y uso correcto de la silla de ruedas y con ello prevenir el padecimiento de el síndrome de túnel carpiano.

Palabras clave

silla de ruedas; túnel del carpo; dispositivo; prevención; propulsión.

Referencias

Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, et al. Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol. 2016;15(12):1273-84. DOI: https://doi.org/10.1016/S1474-4422(16)30231-9

Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosén I. Prevalence of carpal tunnel syndrome in a general population. JAMA. 1999;282(2):153-8. DOI: https://doi.org/10.1001/jama.282.2.153

Mondelli M, Giannini F, Giacchi M. Carpal tunnel syndrome incidence in a general population. Neurology. 2002;58(2):289-94. DOI: https://doi.org/10.1212/wnl.58.2.289

Lee H-J, Lim HS, Kim HS. Validation of known risk factors associated with carpal tunnel syndrome: a retrospective nationwide 11-year population-based cohort study in South Korea. BioRxiv. 2018. DOI: https://doi.org/10.1101/253666

Koytcheva V, Zhekov A, Lazarou G, Riza E. Musculoskeletal disorders BT - promoting health for working women. En: Linos A, Kirch W, editors., New York, NY: Springer New York; 2008. 137-60. DOI: https://doi.org/10.1007/978-0-387-73038-7_5

Sie IH, Waters RL, Adkins RH, Gellman H. Upper extremity pain in the postrehabilitation spinal cord injured patient. Arch Phys Med Rehabil. 1992 [acceso 01/11/2020];73:44-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1729973/

Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012;50:803-11. DOI: https://doi.org/10.1038/sc.2012.55

Kentar Y, Zastrow R, Bradley H, Brunner M, Pepke W, Bruckner T, et al. Prevalence of upper extremity pain in a population of people with paraplegia. Spinal Cord. 2018;56:695-703. DOI: https://doi.org/10.1038/s41393-018-0062-6

Aljure J, Eltorai I, Bradley WE, Lin JE, Johnson B. Carpal tunnel syndrome in paraplegic patients. Paraplegia. 1985;23:182-6. DOI: https://doi.org/10.1038/sc.1985.31

Akbar M, Penzkofer S, Weber MA, Bruckner T, Winterstein M, Jung M. Prevalence of carpal tunnel syndrome and wrist osteoarthritis in long-term paraplegic patients compared with controls. J Hand Surg Eur. 2014;39(2):132-8. DOI: https://doi.org/10.1177/1753193413478550

Asheghan M, Hollisaz MT, Taheri T, Kazemi H, Aghda AK. The prevalence of carpal tunnel syndrome among long-term manual wheelchair users with spinal cord injury: A cross-sectional study. J Spinal Cord Med. 2016;39(3):265-71. DOI: https://doi.org/10.1179/2045772315Y.0000000033

MacDermid JC, Doherty T. Clinical and electrodiagnostic testing of carpal tunnel syndrome: a narrative review. J Orthop Sports Phys Ther. 2004;34(10):565-88. DOI: https://doi.org/10.2519/jospt.2004.34.10.565

Millesi H, Zöch G, Rath T. Interés clínico del plano de deslizamiento de los nervios periféricos. Ann Chir La Main Du Memb Super. 1990;9(2):87-97. DOI: https://doi.org/10.1016/s0753-9053(05)80485-5

Lundborg G. Intraneural microcirculation. Orthop Clin North Am. 1988 [acceso 01/11/2020];19(1):1-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3275919/ 15.Goodman CM, Steadman AK, Meade RA, Bodenheimer C, Thornby J, Netscher DT. Comparison of carpal canal pressure in paraplegic and nonparaplegic subjects: clinical implications. Plast Reconstr Surg. 2001;107(6):1464-71. DOI: https://doi.org/10.1097/00006534-200105000-00024

Impink BG, Boninger ML, Walker H, Collinger JL, Niyonkuru C. Ultrasonographic median nerve changes after a wheelchair sporting event. Arch Phys Med Rehabil. 2009;90(9):1489-94. DOI: https://doi.org/10.1016/j.apmr.2009.02.019

Keir PJ, Bach JM, Hudes M, Rempel DM. Guidelines for wrist posture based on carpal tunnel pressure thresholds. Hum Factors. 2007;49(1):88-99. DOI: https://doi.org/10.1518/001872007779598127

Hatchett PE, Requejo PS, Mulroy SJ, Haubert LL, Eberly VJ, Conners SG. Impact of Gender on Shoulder Torque and Manual Wheelchair Usage for Individuals with Paraplegia: A Preliminary Report. Top Spinal Cord Inj Rehabil. 2009;15(2):79-89. DOI: https://doi.org/10.1310/sci1502-79

Veeger HE, Meershoek LS, van der Woude LH, Langenhoff JM. Wrist motion in handrim wheelchair propulsion. J Rehabil Res Dev. 1998 [acceso 01/11/2020];35(3):305-13. Disponible en: https://europepmc.org/article/med/9704314

Sabick MB, Kotajarvi BR, An K-N. A new method to quantify demand on the upper extremity during manual wheelchair propulsion. Arch Phys Med Rehabil. 2004;85(7):1151-9. DOI: https://doi.org/10.1016/j.apmr.2003.10.024

VanSickle DP, Cooper RA, Boninger ML, DiGiovine CP. Analysis of vibrations induced during wheelchair propulsion. J Rehabil Res Dev. 2001 [acceso 01/11/2020];38:409-21. Disponible en: https://www.semanticscholar.org/paper/Analysis-of-vibrations-induced-during-wheelchair-Vansickle-Cooper/f5ce5aef7702f005747afbe6816333b819e56b4e

Collinger JL, Boninger ML, Koontz AM, Price R, Sisto SA, Tolerico ML, et al. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Arch Phys Med Rehabil. 2008;89(4):667-76. DOI: https://doi.org/10.1016/j.apmr.2007.09.052

Van Drongelen S, Van der Woude LH, Janssen TW, Angenot EL, Chadwick EK, Veeger DH. Mechanical load on the upper extremity during wheelchair activities. Arch Phys Med Rehabil. 2005;86(6):1214-20. DOI: https://doi.org/10.1016/j.apmr.2004.09.023

Kotajarvi BR, Sabick MB, An K-N, Zhao KD, Kaufman KR, Basford JR. The effect of seat position on wheelchair propulsion biomechanics. J Rehabil Res Dev. 2004;41(3B):403-14. DOI: https://doi.org/10.1682/jrrd.2003.01.0008

Boninger ML, Cooper RA, Baldwin MA, Shimada SD, Koontz A. Wheelchair pushrim kinetics: body weight and median nerve function. Arch Phys Med Rehabil. 1999;80(8):910-5. DOI: https://doi.org/10.1016/s0003-9993(99)90082-5

Cowan RE, Nash MS, Collinger JL, Koontz AM, Boninger ML. Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults. Arch Phys Med Rehabil. 2009;90(7):1076-83. DOI: https://doi.org/10.1016/j.apmr.2008.10.034

Lin Y-N, Chiu C-C, Huang S-W, Hsu W-Y, Liou T-H, Chen Y-W, et al. Association between manual loading and newly developed carpal tunnel syndrome in subjects with physical disabilities: a follow-up study. Arch Phys Med Rehabil. 2017;98(10):2002-8. DOI: https://doi.org/10.1016/j.apmr.2017.02.008

Shimada SD, Robertson RN, Bonninger ML, Cooper RA. Kinematic characterization of wheelchair propulsion. J Rehabil Res Dev. 1998 [acceso 01/11/2020];35(2):210-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9651893/

Sullivan KJ, Kantak SS, Burtner PA. Motor learning in children: feedback effects on skill acquisition. Phys Ther. 2008;88(6):720-32. DOI: https://doi.org/10.2522/ptj.20070196

Medola FO, Carril VM, da Silva C, Fortulan CA. Aspects of manual wheelchair configuration affecting mobility: a review. J Phys Ther Sci. 2014;26(2):313-8. DOI: https://doi.org/10.1589/jpts.26.313

Brubaker CE. Wheelchair prescription : an analysis of factors that affect mobility and performance. J of Reh Research and D. 1986 [acceso 01/11/2020];23:19-26. Disponible en: https://www.scirp.org/%28S%28lz5mqp453edsnp55rrgjct55%29%29/reference/referencespapers.aspx?referenceid=1763236

Subbarao JV, Klopfstein J, Turpin R. Prevalence and impact of wrist and shoulder pain in patients with spinal cord injury. J Spinal Cord Med. 1995;18(1):9-13. DOI: https://doi.org/10.1080/10790268.1995.11719374

Ebrahimi A, Kazemi A, Ebrahimi A. Review paper: wheelchair design and its influence on physical activity and quality of life among disabled individuals. Iran Rehabil J. 2016;14(2):85-92. DOI: https://doi.org/10.18869/nrip.irj.14.2.85

Cherubini M, Melchiorri G. Descriptive study about congruence in wheelchair prescription. Eur J Phys Rehabil Med. 2012 [acceso 01/11/2020];48(2):217-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21654593/

Giner-Pascual M, Alcanyis-Alberola M, Millan L, Aguilar-Rodríguez M, Querol F. Shoulder pain in cases of spinal injury : influence of the position of the wheelchair seat. Int J of Reh Res. 2011;34(4):282-9. DOI: https://doi.org/10.1097/MRR.0b013e32834a8fd9

Desroches G, Aissaoui R, Bourbonnais D. Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion. J Rehabil Res Dev. 2006;43(7):871-82. DOI: https://doi.org/10.1682/jrrd.2005.12.0178

Boninger ML, Koontz AM, Sisto SA, Trevor A, Chang M, Price R, et al. Pushrim biomechanics and injury prevention in spinal cord injury: Recommendations based on CULP-SCI investigations. 2005;42(3 supl1):9-19. DOI: https://doi.org/10.1682/jrrd.2004.08.0103

Woude LHV Van Der, Veeger D, Rozendal PRN. Seat height in handrim wheelchair propulsion. J Rehabil Res Dev. 1989 [acceso 01/11/2020];26(4):31-50. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2600867/

Boninger ML, Baldwin M, Cooper RA, Koontz A, Chan L. Manual wheelchair pushrim biomechanics and axle position. Arch Phys Med and Reh. 2000;81(5):608-13 DOI: https://doi.org/10.1016/S0003-9993(00)90043-1

van der Woude LH, Bouw A, van Wegen J, van As H, Veeger D, de Groot S. Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation. J Rehabil Med. 2009;41(3):143-9. DOI: https://doi.org/10.2340/16501977-0296

Perdios A, Sawatzky BJ, Sheel AW. Effects of camber on wheeling efficiency in the experienced and inexperienced wheelchair user. J Rehabil Res Dev. 2007;44(3):459-66. DOI: https://doi.org/10.1682/jrrd.2006.08.0097

Liu H, Pearlman J, Cooper R, Hong E, Wang H, Salatin B, et al. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards. J Rehabil Res Dev. 2010;47(5):441-55. DOI: https://doi.org/10.1682/jrrd.2009.08.0137

Chénier F, Aissaoui R. Effect of wheelchair frame material on users’ mechanical work and transmitted vibration. Biomed Res Int. 2014;2014:609369. DOI: https://doi.org/10.1155/2014/609369.

Hughes B, Sawatzky BJ, Hol AT. A comparison of spinergy versus standard steel-spoke wheelchair wheels. Arch Phys Med Rehabil. 2005;86(3):596-601. DOI: https://doi.org/10.1016/j.apmr.2004.10.006

Gordon J, Kaualarich JJ, Thacker JG. Tests of two new polyurethane foam wheelchair tires. J Rehabil Res Dev. 1989 [acceso 01/11/2020];26(1):33-46. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2918486/

Cooper RA, Wolf E, Fitzgerald SG, Boninger ML, Ulerich R, Ammer WA. Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension. Arch Phys Med Rehabil. 2003;84(1):96-102. DOI: https://doi.org/10.1053/apmr.2003.50069

van der Woude LH, Formanoy M, de Groot S. Hand rim configuration: effects on physical strain and technique in unimpaired subjects? Med Eng Phys. 2003;25(9):765-74. DOI: https://doi.org/10.1016/s1350-4533(03)00102-4

van der Linden ML, Valent L, Veeger HE, van der Woude LH. The effect of wheelchair handrim tube diameter on propulsion efficiency and force application (tube diameter and efficiency in wheelchairs). IEEE Trans Rehabil Eng. 1996;4(3):123-32. DOI: https://doi.org/10.1109/86.536767

Dieruf K, Ewer L, Boninger D. The natural-fit handrim : factors related to improvement in symptoms and function in wheelchair. J Spinal Cord Med. 2008;31(5):578-85. DOI: https://doi.org/10.1080/10790268.2008.11754605

Richter WM, Rodriguez R, Woods KR, Karpinski AP, Axelson PW. Reduced finger and wrist flexor activity during propulsion with a new flexible handrim. Arch Phys Med Rehabil. 2006;87(12):1643-7. DOI: https://doi.org/10.1016/j.apmr.2006.09.009

Medola FO, Fortulan CA, de Moraes B, Carril VM. A new design for an old concept of wheelchair pushrim. Disabil Rehabil Assist Technol. 2012;7(3):234-41. DOI: https://doi.org/10.3109/17483107.2011.629327

Zukowski LA, Roper JA, Shechtman O, Otzel DM, Hovis PW, Tillman MD. Wheelchair ergonomic hand drive mechanism use improves wrist mechanics associated with carpal tunnel syndrome. J Rehabil Res Dev. 2014;51(10):1515-24. DOI: https://doi.org/10.1682/JRRD.2013.09.0211

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2022 Leonardo Arce Gálvez, Alexander Benavides Ramírez, Juan Martin Mancera Álzate, Eduardo Velásquez Girón

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.