Bases biológicas del proceso de consolidación ósea y su relación con la estabilidad biomecánica

Horacio Inocencio Tabares Neyra, Horacio Tabares Sáez, Jesús Humberto Ramírez Espinoza, Roberto Morales Seife

Texto completo:

PDF

Resumen

Introducción: La curación de las fracturas diafisarias es un mecanismo complejo, regulado por factores anatómicos, biológicos y mecánicos. El daño a los tejidos blandos, las fracturas abiertas y otros factores del paciente aumentan el riesgo de deterioro de la curación. La regeneración ósea representa un desafío único, tanto para los médicos como para los científicos.

Objetivo: Revisar las bases biológicas y mecánicas de la osteogénesis reparadora después del tratamiento de las fracturas de los huesos largos.

Métodos: Se realizó una revisión bibliográfica retrospectiva de artículos sobre los avances científicos más recientes relacionados con el proceso de las bases biológicas en el proceso de la consolidación ósea.

Desarrollo: La reparación de fracturas implica la regeneración espontánea de tejidos, incluidos los vasos sanguíneos y los huesos, para restaurar los tejidos lesionados a su estado previo a la lesión y recuperar su estabilidad mecánica. El tipo de vía de curación (directa o indirecta) depende del patrón de fractura y de la estabilidad biomecánica del sitio de la fractura.

Conclusiones: El tratamiento de fracturas diafisarias constituye un problema, que involucra tanto al cirujano ortopédico como al paciente. El conocimiento de los principios básicos de la biología y la biomecánica de la consolidación ósea resultan fundamentales para elegir el mejor tratamiento según el tipo de fractura y el paciente.

Palabras clave

fractura de huesos largos; reparación y cicatrización ósea; principios biológicos y biomecánicos.

Referencias

Mills LA, Aitken SA, Simpson AHRW. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017;88(4):434-9. DOI: https://doi.org/10.1080/17453674.2017.1321351

Andrzejowski P, Giannoudis PV. The ‘diamond concept’ for long bone non-union management. J Orthop Traumatol. 2019;20:21. DOI: https://doi.org/10.1186/s10195-019-0528-0

Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2017;7:678. DOI: https://doi.org/10.3389/fphys.2016.00678

Kenkre JS, Bassett JHD. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308-27. DOI: https://doi.org/10.1177/0004563218759371

Elliott DS, Newman KJ, Forward DP, Hahn DM, Ollivere B, Kojima K, et al. Aunified theory of bone healing and nonunion: BHN theory. Bone Joint J. 2016;98-B(7):884-91. DOI: https://doi.org/10.1302/0301-620x.98b7.36061

Marongiu G, Contini A, Cozzi A, Donadu M, Verona M, Capone A. The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: a systematic review of clinical evidence. Bioengineering (Basel). 2020;7(1):22. DOI: https://doi.org/10.3390/bioengineering7010022

Marongiu G, Dolci A, Verona M, Capone A. The biology and treatment of acute long-bones diaphyseal fractures: overview of the current options for bone healing enhancement. Bone Rep. 2020;12:100249. DOI: https://doi.org/10.1016/j.bonr.2020.100249

Marongiu G, Bandino M, Verona M, Capone A. Biological and biomechanical basis of long-bone diaphyseal fractures: from fracture to non-union. Int J Bone Frag. 2021;1(2):67-71. DOI: https://doi.org/10.57582/IJBF.210102.067

Johnson L, Igoe E, Kleftouris G, Papachristos IV, Papakostidis C, Giannoudis PV. Physical health and psychological outcomes in adult patients with long- bone fracture non-unions: evidence today. J Clin Med. 2019;8(11):1998. DOI: https://doi.org/10.3390/jcm8111998

Angerpointner K, Ernstberger A, Bosch K, Zeman F, Koller M, Kerschbaum M. Quality of life after multiple trauma: results from a patient cohort treated in a certified trauma network. Eur J Trauma Emerg Surg. 2021;47(1):121-7. DOI: https://doi.org/10.1007/s00068-019-01160-y

Foster A, Moriartya TF, Zalavras Ch, Morgensternf M, Jaiprakash A, Crawford R, et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Injury. 2021;52(1):43-52. DOI: https://doi.org/10.1016/j.injury.2020.06.044

Danis R. Théorie et Pratique del’ostéosynthèse. J Bon Joint Surg Br. 1951;33-B(1):144-5. DOI: https://doi.org/10.1302/0301-620X.33B1.144-b

Julien A, Kanagalingam A, Martínez E, Megret J, Luka M, Ménager M, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat Commun. 2021;12(1):2860. DOI: https://doi.org/10.1038/s41467-021-22842-5

Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in bone tissue regeneration: stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution. Int J Mol Sci. 2020;22(1):192. DOI: https://doi.org/10.3390/ijms22010192

Boer FC, Patka P, Bakker FC, Haarman HJTM. Current concepts of fracture healing, delayed unions, and nonunions. Osteosynth Trauma Care. 2021;10(01):1-7. DOI: https://doi.org/10.1055/s-2002-30627

Stewart SK. Fracture non-union: a review of clinical challenges and future research needs. Malays Orthop J. 2019;13(2):1-10. DOI: https://doi.org/10.5704/moj.1907.001

El-Jawhari JJ, Ganguly P, Churchman S, Jones E, Giannoudis PV. The biological fitness of bone progenitor cells in reamer/irrigator/aspirator waste. J Bone Joint Surg Am. 2019;101(23):2111-9. DOI: https://doi.org/10.2106/jbjs.19.00133

Mittal KK, Gupta H, Kaushik N. Reunion of post nail aseptic non-union of diaphyseal femoral fractures by augmentation plating, decortication and bone grafting-Replacement for Exchange nailing. Injury. 2021;52(6):1529-33. DOI: https://doi.org/10.1016/j.injury.2020.10.036

Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8):1093-110. DOI: https://doi.org/10.1302/0301-620x.84b8.13752

Duramaz A, Ursavas¸ HT, Bilgili MG, Bayrak A, Bayram B, Avkan MC. Platelet-rich plasma versus exchange intramedullary nailing in treatment of long bone oligotrophic nonunions. Eur J Orthop Surg Traumatol. 2018;28(1):131-7. DOI: https://doi.org/10.1007/s00590-017-2024-7

O’Hara NN, Slobogean GP, Klazinga NS, Kringos DS. Analysis of patient income in the 5 years following a fracture treated surgically. JAMA Netw Open. 2021;4(2):e2034898. DOI: https://doi.org/10.1001/jamanetworkopen.2020.34898

Obremskey WT, Cutrera N, Kidd CM, Southeastern Fracture Consortium. A prospective multi-center study of intramedullary nailing vs casting of stable tibial shaft fractures. J Orthop Traumatol. 2017;18(1):69-76. DOI: https://doi.org/10.1007/s10195-016-0429-4

Harkin FE, Large RJ. Humeral shaft fractures: union outcomes in a large cohort. J Shoulder Elbow Surg. 2017;26(11):1881-8. DOI: https://doi.org/10.1016/j.jse.2017.07.001

Douras P, Tosounidis T, Giannoudis PV. Application of the ‘diamond concept’ with fast bone marrow aspirate concentration for the treatment of medial malleolus non-union. Injury. 2018;49(12):2326-30. DOI: https://doi.org/10.1016/j.injury.2018.11.013

Ceballos A. Fijación externa y técnicas afines. La Habana: Editorial CIMEQ; 2012.

Scaglione M, Fabbri L, Dell’Omo D, Goffi A, Guido G. The role of external fixation in the treatment of humeral shaft fractures: a retrospective case study review on 85 humeral fractures. Injury. 2015;46(2):265-9. DOI: https://doi.org/10.1016/j.injury.2014.08.045

Ekegren CL, Edwards ER, de Steiger R, Gabbe BJ. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15(12):2845. DOI: https://doi.org/10.3390/ijerph15122845

Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone non-unions-types, aetiology, economics, and treatment recommendations. Int Orthop. 2018;42(2):247-58. DOI: https://doi.org/10.1007/s00264-017-3734-5

Vicenti G, Bizzoca D, Carrozzo M, Nappi V, Rifino F, Solarino G. The ideal timing for nail dynamization in femoral shaft delayed union and non-union. Int Orthop. 2019;43(1):217-22. DOI: https://doi.org/10.1007/s00264-018-4129-y

Congia S, Palmas A, Marongiu G, Capone A. Is antegrade nailing a proper option in 2- and 3-part proximal humeral fractures? Musculoskelet Surg. 2020;104(2):179-85. DOI: https://doi.org/10.1007/s12306-019-00610-5

Bezstarosti H, Van Lieshout EMM, Voskamp LW, Kortram K, Obremskey M, McNally M, et al. Insights into treatment and outcome of fracture-related infection: a systematic literature review. Arch Orthop Trauma Surg. 2019;139(1):61-72. DOI: https://doi.org/10.1007/s00402-018-3048-0

Li AB, Zhang WJ, Guo WJ, Wang XH, Jin HM, Zhao YM. Reamed versus unreamed intramedullary nailing for the treatment of femoral fractures: a meta-analysis of prospective randomized controlled trials. Medicine (Baltimore). 2016;95(29):e4248. DOI: https://doi.org/10.1097/md.0000000000004248

Gottschalk MB, Carpenter W, Hiza E, Reisman W, Roberson J. Humeral shaft fracture fixation: incidence rates and complications as reported by American Board of Orthopaedic Surgery Part II Candidates. J Bone Joint Surg Am. 2016;98(17):e71. DOI: https://doi.org/10.2106/jbjs.15.01049

Kenkre JS, Bassett JHD. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308-27. DOI: https://doi.org/10.1177/0004563218759371

Hodgsona H, Giannoudis P, Howard A. Fracture non-union; what are the current perceived challenges among clinicians? Injury. 2022;53:3865-6. https://doi.org/10.1016/j.injury.2022.10.029

Uchiyama Y, Handa A, Omi H, Hashimoto H, Shimpuku E, Imai T, et al. Locking versus nonlocking superior plate fixations for displaced midshaft clavicle fractures: a prospective randomized trial comparing clinical and radiografic results. J Orthop Sci. 2021;26(6):1094-9. DOI: https://doi.org/10.1016/j.jos.2020.09.017

Zarkadis NJ, Eisenstein ED, Kusnezov NA, Dunn JC, Blair JA. Open reduction internal fixation versus intramedullary nailing for humeral shaft fractures: an expected value decision analysis. J Shoulder Elbow Surg. 2018;27(2):204-10. DOI: https://doi.org/10.1016/j.jse.2017.08.004

Wenger R, Oehme F, Winkler J, Perren SM, Babst R, Beeres FJP. Absolute or relative stability in minimal invasive plate osteosynthesis of simple distal meta or diaphyseal tibia fractures? Injury. 2017;48(6):1217-23. DOI: https://doi.org/10.1016/j.injury.2017.03.005

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2025 Horacio Inocencio Tabares Neyra

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.