Restricción de flujo sanguíneo en la rehabilitación del ligamento cruzado anterior

Aritza Ubieta-García, Lorenzo Antonio Justo Cousiño, Salvador Santiago-Pescador

Texto completo:

PDF

Resumen

RESUMEN

Introducción: La rotura del ligamento cruzado anterior provoca atrofia y pérdida de fuerza, por lo que resulta necesaria una rehabilitación precoz y adecuada. El entrenamiento mediante restricción de flujo sanguíneo parece ser una herramienta segura y efectiva para la ganancia de fuerza y masa muscular en sujetos sanos y en población clínica.

Objetivo: Evaluar el efecto de la rehabilitación con restricción de flujo sanguíneo sobre la fuerza, la masa muscular y la intensidad del dolor en pacientes con reconstrucción del ligamento cruzado anterior.

Métodos: Se realizó la búsqueda de artículos en tres bases de datos, mediante una combinación de términos relativos a la restricción de flujo sanguíneo y rehabilitación del ligamento cruzado anterior. Los estudios seleccionados evaluaron la fuerza, la masa muscular y el dolor. La mayoría de ellos refieren efectos positivos en el uso de la restricción del flujo sanguíneo.

Conclusiones: El entrenamiento con restricción de flujo sanguíneo durante la rehabilitación temprana en la reconstrucción del ligamento cruzado anterior puede ser una alternativa para mejorar la fuerza y aumentar la masa muscular. Se equipara al entrenamiento con cargas altas; además, reduce el dolor y el estrés mecánico sobre la articulación de la rodilla.

Palabras clave

restricción del flujo arterial; oclusión vascular; entrenamiento de fuerza; rehabilitación; rodilla; kaatsu.

Referencias

Loenneke JP, Wilson JM, Marín PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol. 2012;112(5):1849-59. DOI: https://doi.org/10.1007/s00421-011-2167-x 2. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. DOI: https://doi.org/10.3389/fphys.2019.00533 3. Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential safety issues with blood flow restriction training. Scand J Med & Sci Sports. 2011;21(4):510-8. DOI: https://doi.org/10.1111/j.1600-0838.2010.01290.x 4. Larkin KA, Macneil RG, Dirain M, Sandesara B, Manini TM, Buford TW. Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med Sci Sports Exerc. 2012;44(11):2077-83. DOI: https://doi.org/10.1249/MSS.0b013e3182625928 5. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: A review of available evidence. J Sci Med Sport. 2016;19(5):360-7. DOI: https://doi.org/10.1016/j.jsams.2015.04.014 6. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport. 2016;19(8):669-75. DOI: https://doi.org/10.1016/j.jsams.2015.09.005 7. Segal NA, Williams GN, Davis MC, Wallace RB, Mikesky AE. Efficacy of blood flow-restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PM & R. 2015;7(4):376-84. DOI: https://doi.org/10.1016/j.pmrj.2014.09.014 8. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 2015;45(3):313-25. DOI: https://doi.org/10.1007/s40279-014-0288-1 9. Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45(2):187-200. DOI: https://doi.org/10.1007/s40279-014-0264-9 10. Reeves G v, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006;101(6):1616-22. DOI: https://doi.org/10.1152/japplphysiol.00440.2006 11. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypoth. 2012;78(1):151-4. DOI: https://doi.org/10.1016/j.mehy.2011.10.014 12. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903-10. DOI: https://doi.org/10.1152/japplphysiol.00195.2007

Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199-209. DOI: https://doi.org/10.1152/japplphysiol.01266.2009 14. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406-12. DOI: https://doi.org/10.1249/MSS.0b013e318233b4bc 15. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308-14. DOI: https://doi.org/10.1007/s00421-001-0561-5 16. Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27(5):479-89. DOI: https://doi.org/10.1080/02640410802626567 17. Yasuda T, Loenneke JP, Ogasawara R, Abe T. Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise. Acta Physiol Hung. 2013;100(4):419-26. DOI: https://doi.org/10.1556/APhysiol.100.2013.4.6 18. Wernbom M, Augustsson J, Raastad T. Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports. 2008;18(4):401-16. DOI: https://doi.org/10.1111/j.1600-0838.2008.00788.x 19. Kaeding CC, Léger-St-Jean B, Magnussen RA. Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin Sports Med. 2017;36(1):1-8. DOI: https://doi.org/10.1016/j.csm.2016.08.001 20. Astur DC, Xerez M, Rozas J, Debieux PV, Franciozi CE, Cohen M. Anterior cruciate ligament and meniscal injuries in sports: incidence, time of practice until injury, and limitations caused after trauma. Rev Bras Ortop. 2016;51(6):652-6. DOI: https://doi.org/10.1016/j.rboe.2016.04.008 21. Musahl V, Karlsson J. Anterior cruciate ligament tear. N Engl J Med. 2019;380(24):2341-8. DOI: https://doi.org/10.1056/NEJMcp1805931 22. Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, et al. MRI-Based assessment of lower-extremity muscle volumes in patients before and after ACL Reconstruction. J Sport Reh. 2018;27(3):201-12. DOI: https://doi.org/10.1123/jsr.2016-0141 23. Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 2016;19(1):7-11. DOI: https://doi.org/10.1016/j.jsams.2014.12.009 24. Grapar T, Drobnič M, Vauhnik R, Koder J, Kacin A. Factors predicting quadriceps femoris muscle atrophy during the first 12weeks following anterior cruciate ligament reconstruction. Knee. 2017;24(2):319-28. DOI: https://doi.org/10.1016/j.knee.2016.11.003 25. Petterson SC, Barrance P, Buchanan T, Binder-Macleod S, Snyder-Mackler L. Mechanisms underlying quadriceps weakness in knee osteoarthritis. Med Sci Sports Exerc. 2008;40(3):422-7. DOI: https://doi.org/10.1249/MSS.0b013e31815ef285 26. Keays SL, Bullock-Saxton JE, Newcombe P, Keays AC. The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res. 2003;21(2):231-7. DOI: https://doi.org/10.1016/S0736-0266(02)00160-2 27. Yan F, Xie F, Gong X, Wang F, Yang L. Effect of anterior cruciate ligament rupture on secondary damage to menisci and articular cartilage. Knee. 2016;23(1):102-5. DOI: https://doi.org/10.1016/j.knee.2015.07.008 28. Illingworth KD, Hensler D, Casagranda B, Borrero C, van Eck CF, Fu FH. Relationship between bone bruise volume and the presence of meniscal tears in acute anterior cruciate ligament rupture. Knee Surg Sports Traum Arthrosc. 2014;22(9):2181-6. DOI: https://doi.org/10.1007/s00167-013-2657-y 29. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. British J Sport Med. 2017;51(13):1003-11. DOI: https://doi.org/10.1136/bjsports-2016-097071

Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48(2):361-78. DOI: https://doi.org/10.1007/s40279-017-0795-y 31. Ladlow P, Coppack RJ, Dharm-Datta S, Conway D, Sellon E, Patterson SD, et al. Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: a single-blind randomized controlled trial. Front Physiol. 2018;9:1269. DOI: https://doi.org/10.3389/fphys.2018.01269

Ferraz RB, Gualano B, Rodrigues R, Kurimori CO, Fuller R, Lima FR, et al. Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc. 2018;50(5):897-905. DOI: https://doi.org/10.1249/MSS.0000000000001530 33. Giles L, Webster KE, McClelland J, Cook JL. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. British J Sport Med. 2017;51(23):1688-94. DOI: https://doi.org/10.1136/bjsports-2016-096329 34. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Therap. 2003;83(8):713-21. DOI: https://doi.org/10.1093/ptj/83.8.713 35. Albanese E, Bütikofer L, Armijo-Olivo S, Ha C, Egger M. Construct validity of the Physiotherapy Evidence Database (PEDro) quality scale for randomized trials: Item response theory and factor analyses. Res Synth Methods. 2020;11(2):227-36. DOI: https://doi.org/10.1002/jrsm.1385 36. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:160. DOI: https://doi.org/10.1136/bmj.n160 37. Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035-9. DOI: https://doi.org/10.1097/00005768-200012000-00011 38. Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):62-8. DOI: https://doi.org/10.1080/00016470310013680 39. Hughes L, Rosenblatt B, Haddad F, Gissane C, McCarthy D, Clarke T, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK national health service randomised controlled trial. Sports Med. 2019;49(11):1787-805. DOI: https://doi.org/10.1007/s40279-019-01137-2 40. Hughes L, Patterson SD, Haddad F, Rosenblatt B, Gissane C, McCarthy D, et al. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK National Health Service trial. Phys Therap Sport. 2019;39:90-8. DOI: https://doi.org/10.1016/j.ptsp.2019.06.014 41. Iversen E, Røstad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci. 2016;5(1):115-8. DOI: https://doi.org/10.1016/j.jshs.2014.12.005 42. Curran MT, Bedi A, Mendias CL, Wojtys EM, Kujawa M v, Palmieri-Smith RM. Blood flow restriction training applied with high-intensity exercise does not improve quadriceps muscle function after anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med. 2020;48(4):825-37. DOI: https://doi.org/10.1177/0363546520904008 43. Damas F, Libardi CA, Ugrinowitsch C. The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol. 2018;118(3):485-500. DOI: https://doi.org/10.1007/s00421-017-3792-9 44. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol. 2006;100(5):1460-6. DOI: https://doi.org/10.1152/japplphysiol.01267.2005 45. Iida H, Nakajima T, Kurano M, Yasuda T, Sakamaki M, Sato Y, et al. Effects of walking with blood flow restriction on limb venous compliance in elderly subjects. Clin Physiol Func Imag. 2011;31(6):472-6. DOI: https://doi.org/10.1111/j.1475-097X.2011.01044.x 46. Nielsen JL, Aagaard P, Bech RD, Nygaard T, Hvid LG, Wernbom M, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(17):4351-61. DOI: https://doi.org/10.1113/jphysiol.2012.237008 47. Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, et al. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily "KAATSU" resistance training. Int J KAATSU Train Res. 2005;1(1):6-12. DOI: https://doi.org/10.3806/ijktr.1.6 48. Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J KAATSU Train Res. 2005;1(1):19-23. DOI: https://doi.org/10.3806/ijktr.1.19 49. Abe T, Beekley MD, Hinata S, Koizumi K, Sato Y. Day-to-day change in muscle strength and MRI-measured skeletal muscle size during 7 days KAATSU resistance training: A case study. Int J KAATSU Train Res. 2005;1(2):71-6. DOI: https://doi.org/10.3806/ijktr.1.71 50. Fujita T, Brechue WF, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J KAATSU Train Res. 2008;4(1):1-8. DOI: https://doi.org/10.3806/ijktr.4.1 51. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334-59. DOI: https://doi.org/10.1249/MSS.0b013e318213fefb 52. Lowery RP, Joy JM, Loenneke JP, de Souza EO, Machado M, Dudeck JE, et al. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Func Imag. 2014;34(4):317-21. DOI: https://doi.org/10.1111/cpf.12099 53. Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train. 20131;48(2):186-91. DOI: https://doi.org/10.4085/1062-6050-48.2.10 54. Tagesson S, Oberg B, Good L, Kvist J. A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med. 2008;36(2):298-307. DOI: https://doi.org/10.1177/0363546507307867 55. Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(3):529-34. DOI: https://doi.org/10.1249/MSS.0b013e31815ddac6 56. Tennent DJ, Burns TC, Johnson AE, Owens JG, Hylden CM. Blood flow restriction training for postoperative lower-extremity weakness: a report of three cases. Curr Sports Med Reports. 2018;17(4):119-22. DOI: https://doi.org/10.1249/JSR.0000000000000470 57. Henriksen M, Rosager S, Aaboe J, Graven-Nielsen T, Bliddal H. Experimental knee pain reduces muscle strength. J Pain. 2011;12(4):460-7. DOI: https://doi.org/10.1016/j.jpain.2010.10.004 58. Park J, Hopkins JT. Induced anterior knee pain immediately reduces involuntary and voluntary quadriceps activation. Clin J Sport Med. 2013;23(1):19-24. DOI: https://doi.org/10.1097/JSM.0b013e3182717b7b 59. Korakakis V, Whiteley R, Epameinontidis K. Blood flow restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys Therapy Sport. 2018;32:235-43. DOI: https://doi.org/10.1016/j.ptsp.2018.05.021 60. Hughes L, Paton B, Haddad F, Rosenblatt B, Gissane C, Patterson SD. Comparison of the acute perceptual and blood pressure response to heavy load and light load blood flow restriction resistance exercise in anterior cruciate ligament reconstruction patients and non-injured populations. Phys Therapy Sport. 2018;33:54-61. DOI: https://doi.org/10.1016/j.ptsp.2018.07.002 61. Koltyn KF. Exercise-induced hypoalgesia and intensity of exercise. Sports Med. 2002;32(8):477-87. DOI: https://doi.org/10.2165/00007256-200232080-00001 62. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119-24. DOI: https://doi.org/10.1152/japplphysiol.90368.2008 63. Martín J, Ruiz J, Herrero AJ, Loenneke JP, Aagaard P, Cristi C, et al. Adaptation of perceptual responses to low-load blood flow restriction training. J Stren Cond Res. 2017;31(3):765-72. DOI: https://doi.org/10.1519/JSC.0000000000001478 64. Hollander DB, Reeves G v, Clavier JD, Francois MR, Thomas C, Kraemer RR. Partial occlusion during resistance exercise alters effort sense and pain. J Stren Cond Res. 2010;24(1):235-43. DOI: https://doi.org/10.1519/JSC.0b013e3181c7badf 65. Jessee M, Dankel S, Buckner S, Mouser J, Mattocks K, Loenneke J. The cardiovascular and perceptual response to very low load blood flow restricted exercise. Int J Sports Med. 2017;38(08):597-603. DOI: https://doi.org/10.1055/s-0043-109555 66. Soligon S, Lixandrão M, Biazon T, Angleri V, Roschel H, Libardi C. Lower occlusion pressure during resistance exercise with blood-flow restriction promotes lower pain and perception of exercise compared to higher occlusion pressure when the total training volume is equalized. Physiol Int. 2018;105(3):276-84. DOI: https://doi.org/10.1556/2060.105.2018.3.18

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2023 Aritza Ubieta-García, Lorenzo Antonio Justo Cousiño, Salvador Santiago-Pescador

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.