Biomechanical stability in fracture treatment and its relationship with infections

Authors

Keywords:

biomechanical stability, absolute stability, relative stability, infection

Abstract

Introduction: Biomechanical stability of the fracture site is a vital factor for bone healing, as it allows the formation of the callus that joins the ends of the fracture and allows loads to be transmitted through it. Infection associated with these traumas is considered a musculoskeletal complication in orthopedic trauma surgery.

Objective: To review the scientific advances related to biomechanical stability in fracture consolidation and its relationship with infections.

Methods: A retrospective review was made of the scientific advances related to biomechanical stability in fracture consolidation and its relationship with infection. Emphasis was placed on the factors that intervene in this process.

Development: Current principles in fracture treatment recognize two forms of biomechanical stability to obtain consolidation: absolute stability and relative stability. During indirect bone healing, tension is required between a minimum required for callus induction and a maximum necessary for bone bridge formation. The development of an infection depends on the health status of the patient (host) and the amount of germs in the surgical wound. Local conditions of the postoperative area (inflammatory transudate, hematoma, remaining necrotic tissue) can act as biological incubator and favor microbial virulence, which triggers infection.

Conclusions: Biomechanical stability is essential for fracture healing. The principles of osteosynthesis and the characteristics of the fracture to be treated must be respected when making surgical decisions. The existence of vicious circle between instability and infection is reflected in the evolution of tissue trauma, local inflammation, interrupted neovascularity and osteolysis; therefore, stability can prevent and treat infection.

Downloads

Download data is not yet available.

Author Biography

Horacio Inocencio Tabares Neyra, Centro Iberoamericano para el Tratamiento de la Tercera Edad (Cited). La Habana

Especialista segundo grado, Profesor e Investigador Titular. Doctor en Ciencias Médicas. Jefe de cirugía CITED

References

1. Alt V, Giannoudis PV. Musculoskeletal infections - A global burden and a new subsection in Injury. Injury. 2019;50(12):2152-3. DOI: https://doi.org/10.1016/j.injury.2019.11.001

2. Calori G, Giannoudis PV. Enhancement of fracture healing with the diamond concept: The role of the biological chamber. Injury. 2011;42(11):1191-3. DOI: https://doi.org/10.1016/j.injury.2011.04.016

3. Govaert GAM, Kuehl R, Atkins BL, Trampuz A, Morgenstern M, Obremskey WT, et al. Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma. 2020;34(1):8-17. DOI: https://doi.org/10.1097/bot.0000000000001614

4. Kadhim M, Holmes L Jr, Geshef MG, Conway JD. Treatment options for nonunion with segmental bone defects: systematic review and quantitative evidence synthesis. J Orthop Trauma. 2017;31(2):111-9. DOI: https://doi.org/10.1097/bot.0000000000000700

5. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Scientific background, design and application. Injury. 1991 [acceso 15/02/2023];22(suppl 1):1-41. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1806522/

6. Metsemakers WJ, Morgenstern M, McNally MA, Moriarty TF, McFadyen I, Scarborough M, et al. Fracture-related infection: a consensus on defnition from an international expert group. Injury. 2018;49(3):505-10. DOI: https://doi.org/10.1016/j.injury.2017.08.040

7. Wolff J. Das gesetz der transformation der knochen. Dtsch Med Wochenschr. 1893;19(47):1222-4. DOI: https://doi.org/10.1055/s-0028-1144106

8. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8):1093-110. DOI: https://doi.org/10.1302/0301-620x.84b8.13752

9. Fang C, Wong TM, Lau TW, To KK, Wong SS, Leung F. Infection after fracture osteosynthesis-part I. J Orthop Surg. 2017;25(1):2309499017692712. DOI: https://doi.org/10.1177/2309499017692712

10. Kuehl R, Tschudin-Sutter S, Morgenstern M, Dangel M, Egli A, Nowakowski A, et al. Time-dependent diferences in management and microbiology of orthopaedic internal fxation-associated infections: an observational prospective study with 229 patients. Clin Microbiol Infect. 2019;25(1):76-81. DOI: https://doi.org/10.1016/j.cmi.2018.03.040

11. Foster A, Moriartya TF, Zalavras Ch, Morgensternf M, Jaiprakash A, Crawford R, et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Injury. 2021;52(1):43-52. DOI: https://doi.org/10.1016/j.injury.2020.06.044

12. Bezstarosti H, Van Lieshout EMM, Voskamp LW, Kortram K, Obremskey W, McNally MA, et al. Insights into treatment and outcome of fracture-related infection: a systematic literature review. Arch Orthop Trauma Surg. 2019;139(1):61-72. DOI: https://doi.org/10.1007/s00402-018-3048-0

13. Metsemakers WJ, Onsea J, Neutjens E, Steffens E, Schuermans A, McNally M, et al. Prevention of fracture related infection: a multidisciplinary care package. Int Orthop. 2017;41(12):2457-69. DOI: https://doi.org/10.1007/s00264-017-3607-y

14. Metsemakers WJ, Morgenstern M, Senneville E, Borens O, Govaert GAM, Onsea J, et al. General treatment principles for fracture‑related infection: recommendations from an international expert group. Arch Orthop Trauma Surg. 2020;140(8):1013-27. DOI: https://doi.org/10.1007/s00402-019-03287-4

15. Depypere M, Morgenstern M, Kuehl R, Senneville E, Moriarty TF, Obremskey WT, et al. Pathogenesis and management of fracture- related infection. Clin Microbiol Infect. 2020;26(5):572-8. DOI: https://doi.org/10.1016/j.cmi.2019.08.006

16. Pulcini C, Binda F, Lamkang AS, Trett A, Charani E, Gof DA, et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin Microbiol Infect. 2019;25(1):20-5. DOI: https://doi.org/10.1016/j.cmi.2018.03.033

17. Shah NN, Vetter TR. Comprehensive preoperative assessment and global optimization. Anesthesiol Clin 2018;36(2):259-80. DOI: https://doi.org/10.1016/j.anclin.2018.01.006

18. Hellebrekers P, Rentenaar RJ, McNally MA, Hietbrink F, Houwert RM, Leenen LPH, et al. Getting it right first time: the importance of a structured tissue sampling protocol for diagnosing fracture-related infections. Injury. 2019;50(10):1649-55. DOI: https://doi.org/10.1016/j.injury.2019.05.014

19. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002;25(5 supl):s571-8. DOI: https://doi.org/10.3928/0147-7447-20020502-05

20. Onsea J, Depypere M, Govaert G, Kuehl R, Vandendriessche T, Morgenstern M, et al. Accuracy of tissue and sonication fuid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal. J Bone Jt Infect. 2018;3(4):173-81. DOI: https://doi.org/10.7150/jbji.27840

21. Andrzejowski P, Giannoudis PV. The ‘diamond concept’ for long bone non-union management. J Orthop Traumatol. 2019:20(1):21. DOI: https://doi.org/10.1186/s10195-019-0528-0

22. Morgenstern M, Athanasou NA, Ferguson JY, Metsemakers WJ, Atkins BL, McNally MA. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Joint J. 2018;100-B(7):966-72. DOI: https://doi.org/10.1302/0301-620x.100b7.bjj-2018-0052.r1

23. Le AX, Miclau T, Hu D, Helms JA. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res. 2001;19(1):78-84. DOI: https://doi.org/10.1016/s0736-0266(00)00006-1

24. Steward AJ, Wagner DR, Kelly DJ. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. Eur Cell Mater. 2013;25:167-78. DOI: https://doi.org/10.22203/ecm.v025a12

25. Buckley RE, Moran CG, Apivatthakakul T. AO Principles of fracture management. 3 ed. Switzerland: AOFoundation, Thieme; 2018. DOI: https://doi.org/10.1055/b-0038-160811

26. Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125(4):353-64. DOI: https://doi.org/10.1111/apm.12687

27. Perren SM. Fracture healing: fracture healing understood as the result of a fascinating cascade of physical and biological interactions. Part II. Acta Chir Orthop Traumatol Cech. 2014 [acceso 15/02/2023];81(6):13-21. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25651289/

28. Metsemakers WJ, Kuehl R, MoriartyTF, Richards RG, Verhofstad MHJ, Borens O, et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury. 2018;49(3):511-22. DOI: https://doi.org/10.1016/j.injury.2016.09.019

29. Hotchen AJ, McNally MA, Sendi P. The classifcation of long bone osteomyelitis: a systemic review of the literature. J Bone Jt Infect. 2017;2(4):167-74. DOI: https://doi.org/10.7150/jbji.21050

30. Marongiu G, Contini A, Cozzi A, Donadu M, Verona M, Capone A. The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: a systematic review of clinical evidence. Bioengineering (Basel). 2020;7(1):22. DOI: https://doi.org/10.3390/bioengineering7010022

31. Miclau KR, Brazina SA, Bahney CS, Hankenson KD, Hunt TK, Marcucio RS, et al. Stimulating fracture healing in ischemic environments: does oxygen direct stem cell fate during fracture healing? Front Cell Dev Biol 2017;5:45. DOI: https://doi.org/10.3389/fcell.2017.00045

32. Haffner-Luntzer M, Hankenson KD, Ignatius A, Pfeifer R, Khader BA, Hildebrand F, et al. Review of animal models of comorbidities in fracture-healing research. J Orthop Res. 2019;37(12):2491-8. DOI: https://doi.org/10.1002/jor.24454

33. Mehta D, Abdou S, Stranix JT, Levine JP, McLaurin T, Tejwani N, et al. Comparing radiographic progression of bone healing in Gustilo IIIB open tibia fractures treated with muscle versus fasciocutaneous faps. J Orthop Trauma. 2018;32(8):381-5. DOI: https://doi.org/10.1097/bot.0000000000001190

34. Walter N, Rupp M, Hierl K, Pfeifer C, Kerschbaum M, Hinterberger T, et al. Long- term patient- related quality of life after fracture- related infections of the long bones. Bone Joint Res. 2021;10(5):321-7. DOI: https://doi.org/10.1302/2046-3758.105.bjr-2020-0532

35. Merritt K, Dowd JD. Role of internal fixation in infection of open fractures: studies with staphylococcus aureus and Proteus mirabilis. J Orthop Res. 1987;5(1):23-8. DOI: https://doi.org/10.1002/jor.1100050105

36. Sabaté M, O’Mahony L, Zeiter S, Kluge K, Ziegler M, Berset C, et al. Influence of fracture stability on staphylococcus epidermidis and staphylococcus aureus infection in a murine femoral fracture model. Eur Cells Mater. 2018;34:321-40. DOI: https://doi.org/10.22203/ecm.v034a20

Published

2025-05-09

How to Cite

1.
Tabares Neyra HI, Tabares Sáez H, Ramírez Espinoza JH, Morales Seife R. Biomechanical stability in fracture treatment and its relationship with infections. Revista Cubana de Ortopedia y Traumatologí­a [Internet]. 2025 May 9 [cited 2025 May 10];39. Available from: https://revortopedia.sld.cu/index.php/revortopedia/article/view/876

Issue

Section

Artículos de revisión