Radiography-computed tomography concordance study of distal radius fractures

Authors

Keywords:

radius fractures, X-ray computed tomography, bone scan, osteosynthesis of fractures, reproducibility of the results.

Abstract

Introduction: Distal radius fracture is common in the upper extremity and represents a therapeutic challenge.

Objective: To determine the agreement between simple radiography and computed tomography with respect to AO Foundation and Fernández classifications, and the choice of treatment.

Methods: A diagnostic agreement study was carried out between simple radiography and computed tomography. Orthopedists and hand surgeons analyzed 19 images of distal radius fractures according to AO Foundation and Fernández classifications, and the different treatment options. Fleiss Kappa coefficient was used for the degree of agreement. The Student's t-test and chi-square differentiated the groups for quantitative and qualitative variables, respectively. There was a statistical significance of p = 0.05.

Results: Fernández classification coincided better than AO Foundation between radiography and computed tomography. In the choice of treatment and osteosynthesis technique, agreement was greater than 90%, while the surgical approach only reached 50%. The radiographic AO Foundation classification corresponded to complex fractures while Fernández classification corresponded to less complicated ones. Fractures were underestimated when classified with radiography.

Conclusions: The relationship of classifications between radiography and computed tomography for distal radius fractures is not satisfactory. Computed tomography provides information that modifies treatment decisions.

Downloads

Download data is not yet available.

Author Biography

Enrique Manuel Vergara Amador, Universidad Nacional de Colombia. Unidad de Ortopedia

Profesor Ortopedia y traumatologia

Cirugia de la mano y microcirugia

ortopedia pediatrica

References

Kastelec M. Distal radius and wrist. En: Buckley R, editor. AO principles of fracture management. 3 ed. New York: Thieme; 2017. p. 673-97.

Wadsten M. Distal radius fractures: aspects on radiological and clinical outcome and evaluation of a new classification system [Thesis doctoral degree]. Suecia: Umea University; 2016.

Hintringer W, Rosenauer R, Pezzei C, Quadlbauer S, Jurkowitsch J, Keuchel T, et al. Biomechanical considerations on a CT-based treatment-oriented classification in radius fractures. Arch Orthop Trauma Surg. 2020;140(5):595-609. DOI: https://doi.org/10.1007/s00402-020-03405-7

Weil NL, El Moumni M, Rubinstein SM, Krijnen P, Termaat MF, Schipper IB. Routine follow-up radiographs for distal radius fractures are seldom clinically substantiated. Arch Orthop Trauma Surg. 2017;137(9):1187-91. DOI: https://doi.org/10.1007/s00402-017-2743-6

Hozack BA, Tosti RJ. Fragment-specific fixation in distal radius fractures. Curr Rev Musculoskelet Med. 2019;12(2):190-7. DOI: https://doi.org/10.1007/s12178-019-09538-6

Cole RJ, Bindra RR, Evanoff BA, Gilula LA, Yamaguchi K, Gelberman RH. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: reliability of plain radiography versus computed tomography. J Hand Surg Am. 1997;22(5):792-800. DOI: https://doi.org/10.1016/s0363-5023(97)80071-8

Brink PR, Rikli DA. Four-corner concept: CT-based assessment of fracture patterns in distal radius. J Wrist Surg. 2016;5(2):147-51. DOI: https://doi.org/10.1055/s-0035-1570462

Das Graças V, Da Costa AC, Rodrigues L, Figueira D, Chakkour I, Checchia SL. Proposal tomographic classification for intra-articular distal radius fractures. Acta Ortop Bras. 2018;26(1):54-8. DOI: https://doi.org/10.1590/1413-785220182601179613

Miziara PR, Pereira MV, Cortese F, Medeiros RS, Leomil EJ, Mattar R, et al. Classifying radius fractures with X-Ray and tomography imaging. Acta Ortop Bras. 2008;17(2):9-13. DOI: https://doi.org/10.1590/S1413-78522009000200001

Wei J, Yang TB, Luo W, Qin JB, Kong FJ. Complications following dorsal versus volar plate fixation of distal radius fracture: a meta-analysis. J Int Med Res. 2013;41(2):265-75. DOI: https://doi.org/10.1177/0300060513476438

Leixnering M, Rosenauer R, Pezzei C, Jurkowitsch J, Beer T, Keuchel T, et al. Indications, surgical approach, reduction, and stabilization techniques of distal radius fractures. Arch Orthop Trauma Surg. 2020;140(5):611-21. DOI: https://doi.org/10.1007/s00402-020-03365-y

Schnetzke M, Fuchs J, Vetter SY, Swartman B, Keil H, Grützner PA, et al. Intraoperative three-dimensional imaging in the treatment of distal radius fractures. Arch Orthop Trauma Surg. 2018;138(4):487-93. DOI: https://doi.org/10.1007/s00402-018-2867-3

Bain GI, Alexander JJ, Eng K, Durrant A, Zumstein MA. Ligament origins are preserved in distal radial intraarticular two-part fractures: a computed tomography-based study. J Wrist Surg. 2013;2(3):255-62. DOI: https://doi.org/10.1055/s-0033-1355440

Dario P, Matteo G, Carolina C, Marco G, Cristina D, Daniele F, et al. Is it really necessary to restore radial anatomic parameters after distal radius fractures? Injury. 2014;45suppl6:s21-6. DOI: https://doi.org/10.1016/j.injury.2014.10.018

Abe Y, Fujii K. Arthroscopic-assisted reduction of intra-articular distal radius fracture. Hand Clin. 2017;33(4):659-68. DOI: https://doi.org/10.1016/j.hcl.2017.07.011

Herzberg G. Intra-articular fracture of the distal radius: arthroscopic-assisted reduction. J Hand Surg Am. 2010;35(9):1517-9. DOI: https://doi.org/10.1016/j.jhsa.2010.06.009

Ardouin L, Durand A, Gay A, Leroy M. Why do we use arthroscopy for distal radius fractures? Eur J Orthop Surg Traumatol. 2018;28(8):1505-14. DOI: https://doi.org/10.1007/s00590-018-2263-2

Kastenberger T, Kaiser P, Schmidle G, Schwendinger P, Gabl M, Arora R. Arthroscopic assisted treatment of distal radius fractures and concomitant injuries. Arch Orthop Trauma Surg. 2020;140(5):623-38. DOI: https://doi.org/10.1007/s00402-020-03373-y

Azi ML, Teixeira MB, de Carvalho SF, de Almeida AA, Cotias RB. Computed tomography vs standard radiograph in preoperative planning of distal radius fractures with articular involvement. Strategies Trauma Limb Reconstr. 2019;14(1):15-9. DOI: https://doi.org/10.5005/jp-journals-10080-1420

Arealis G, Galanopoulos I, Nikolaou VS, Lacon A, Ashwood N, Kitsis C. Does the CT improve inter- and intra-observer agreement for the AO, Fernandez and Universal classification systems for distal radius fractures? Injury. 2014;45(10):1579-84. DOI: https://doi.org/10.1016/j.injury.2014.06.017

Kleinlugtenbelt YV, Groen SR, Ham SJ, Kloen P, Haverlag R, Simons MP, et al. Classification systems for distal radius fractures. Acta Orthop. 2017;88(6):681-7. DOI: https://doi.org/10.1080/17453674.2017.1338066

Das Graças V, Da Costa AC, Figueira D, Depiere L, Checchia SL, Chakkour I. Computed tomography's influence on the classifications and treatment of the distal radius fractures. Hand (N Y). 2015;10(4):663-9. DOI: https://doi.org/10.1007/s11552-015-9773-8

Published

2023-12-08

How to Cite

1.
Cortes Neira AX, Vergara Amador EM, Castañeda Lopez JF. Radiography-computed tomography concordance study of distal radius fractures. Revista Cubana de Ortopedia y Traumatologí­a [Internet]. 2023 Dec. 8 [cited 2025 May 19];37(4). Available from: https://revortopedia.sld.cu/index.php/revortopedia/article/view/665

Issue

Section

Artículos originales