Factors associated with bone consolidation

Authors

Keywords:

bone consolidation, bone callus, diamond concept.

Abstract

Introduction: Bone healing is a tissue regeneration process, which is influenced by multiple biological and biomechanical processes. It is a challenge for both physicians and scientists.

Objectives: To update information on factors associated with the bone consolidation process.

Methods: A retrospective review was conducted on scientific advances related to the bone consolidation process in the Medline database, certified by the Ministry of Science, Technology and Environment.

Development: Bone has regeneration potential in adult life with considerable intrinsic repair capacities. The cortex, periosteum, bone marrow and external soft tissues contribute to the healing process. The fracture hematoma is a source of signaling molecules. A sufficient cell population with high vitality allows the fractured bone to evolve towards its repair. The extracellular matrix provides the scaffolding for cellular events and interactions. Mechanical stability is considered a crucial factor for bone healing. These four elements constitute the Diamond concept.

Conclusions: The process of bone consolidation is a complex phenomenon: vascularity and individual characteristics constitute the basis on which other determinants act, such as osteoprogenitor cells, osteoinductive mediators and matrix, and sufficient mechanical stability.

Downloads

Download data is not yet available.

Author Biography

Horacio Inocencio Tabares Neyra, Centro Iberoamericano para el Tratamiento de la Tercera Edad (Cited). La Habana

Especialista segundo grado, Profesor Titular, Doctor en Ciencias medicas, Jefe de cirugia CITED

References

Buckley RE, Moran CG, Apivatthakakul T. Moran. AO Principles of Fracture Management. Switzerland: AOFoundation, Thieme; 2018. DOI: https://doi.org/10.1055/b-0038-160811

Foster AL, Moriartya TF, Zalavras Ch, Morgenstern M, Jaiprakash A, Crawford R, et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Injury. 2021;52(1):43-52. DOI: https://doi.org/10.1016/j.injury.2020.06.044

Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2017;7:678. DOI: https://doi.org/10.3389/fphys.2016.00678

Kenkre JS, Bassett JHD. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308-27. DOI: https://doi.org/10.1177/0004563218759371

Elliott DS, Newman KJ, Forward DP, Hahn DM, Ollivere B, Kojima K, et al. A unified theory of bone healing and nonunion: BHN theory. Bone Joint J. 2016;98-B(7):884-91. DOI: https://doi.org/10.1302/0301-620x.98b7.36061

Ekegren CL, Edwards ER, de Steiger R, Gabbe BJ. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15(12):2845. DOI: https://doi.org/10.3390/ijerph15122845

Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(supl 4):S3-6. DOI: https://doi.org/10.1016/s0020-1383(08)70003-2

Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D. The diamond concept: open questions. Injury 2008;39(supl 2):S5-8. DOI: https://doi.org/10.1016/s0020-1383(08)70010-x

Giannoudis PV. Fracture healing and bone regeneration: autologous bone grafting or BMPs? Injury. 2009;40(12):1243-4. DOI: https://doi.org/10.1016/j.injury.2009.10.004

Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal medicine. Injury. 2009;40(supl 3):S1-3. DOI: https://doi.org/10.1016/s0020-1383(09)00642-1

Rupp M, Biehl C, Budak M, Thormann U, Heiss C, Alt V. Diaphyseal long bone non-unions-types, aetiology, economics, and treatment recommendations. Int Orthop. 2018;42(2):247-58. DOI: https://doi.org/10.1007/s00264-017-3734-5

Stewart SK. Fracture non-union: a review of clinical challenges and future research needs. Malays Orthop J. 2019;13(2):1-10. DOI: https://doi.org/10.5704/moj.1907.001

Boer FC den, Patka P, Bakker FC, Haarman HJTM. Current concepts of fracture healing, delayed unions, and nonunions. Osteosynth Trauma Care. 2021;10(01):1-7. DOI: https://doi.org/10.1055/s-2002-30627

Giannoudis PV, Kontakis G. Treatment of long bone aseptic non-unions: monotherapy or polytherapy? Injury. 2009;40:1021-2. DOI: https://doi.org/10.1016/j.injury.2009.07.064

Giannoudis PV, Goff T, Roshdy Tl. Does mobilisation and transmigration of mesenchymal stem cells occur after trauma? Injury Int J Care Injur. 2010;41(11):1099-102. DOI: https://doi.org/10.1016/j.injury.2010.09.010

Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: The role of the biological chamber. Injury. 2011;42(11):1191-3. DOI: https://doi.org/10.1016/j.injury.2011.04.016

Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2016;7:678. DOI: https://doi.org/10.3389%2Ffphys.2016.00678

Bastard C, Dubory A, Flouzat Lachaniette CH, Boutroux P. Tratamiento quirúrgico de la seudoartrosis diafisaria aséptica. EMC. 2021;13(4):1-17. DOI: https://doi.org/10.1016/S2211-033X(21)45766-X

Duramaz A, Ursavas HT, Bilgili MG, Bayrak A, Bayram B, Avkan MC. Platelet-rich plasma versus exchange intramedullary nailing in treatment of long bone oligotrophic nonunions. Eur J Orthop Surg Traumatol. 2018;28(1):131-7. DOI: https://doi.org/10.1007/s00590-017-2024-7

Andrzejowski P, Giannoudis PV. The ‘diamond concept’ for long bone non-union management. J Orthop Traumatol. 2019;20(1):21. DOI: https://doi.org/10.1186/s10195-019-0528-0

Douras P, Tosounidis T, Giannoudis PV. Application of the ‘diamond concept’ with fast bone marrow aspirate concentration for the treatment of medial malleolus non-union. Injury. 2018;49(12):2326-30. DOI: https://doi.org/10.1016/j.injury.2018.11.013

El-Jawhari JJ, Ganguly P, Churchman S, Jones E, Giannoudis PV. The biological fitness of bone progenitor cells in reamer/irrigator/aspirator waste. J Bone Joint Surg Am. 2019;101(23):2111-9. DOI: https://doi.org/10.2106/jbjs.19.00133

Mittal KK, Gupta H, Kaushik N. Reunion o postnail aseptic non-union of diaphyseal femoral fractures by augmentation plating, decortication and bone grafting-Replacement for Exchange nailing. Injury. 2021;52(6):1529-33. DOI: https://doi.org/10.1016/j.injury.2020.10.036

Hodgson H, Giannoudis PV, Howard A. Fracture non-union; what are the current perceived challenges among clinicians? Injury. 2022;53(12):3865-6. DOI: https://doi.org/10.1016/j.injury.2022.10.029

Walters G, Pountos I, Giannoudis PV. The cytokines and micro-environment of fracture haematoma: current evidence. J Tissue Eng Regener Med. 2018;12(3):e1662-77. DOI: https://doi.org/10.1002/term.2593

Vicenti G, Bizzoca D, Carrozzo M, Nappi V, Rifino F, Solarino G. The ideal timing for nail dynamization in femoral shaft delayed union and non-union. Int Orthop. 2019;43:217-22. DOI: https://doi.org/10.1007/s00264-018-4129-y

Published

2024-10-27

How to Cite

1.
Tabares Neyra HI, Tabares Sáez H, Ramírez Espinoza JH, Morales Seife R. Factors associated with bone consolidation. Revista Cubana de Ortopedia y Traumatologí­a [Internet]. 2024 Oct. 27 [cited 2025 Apr. 25];38. Available from: https://revortopedia.sld.cu/index.php/revortopedia/article/view/750

Issue

Section

Artículos de revisión